

August 5, 2022 Division B, IAUGA, BEXCO, Busan

Se-Hyung Cho

Start of Radio Astronomy and Construction of TRAO 14 m Radio Telescope at KASI

Sept. 1974 : Korean National Astronomy Observatory (KNAO) was established by presidential decree under the Ministry of Science and Technology

July 1975 : Dr. Young-Key Min,

who majored in radio astronomy, was appointed as **the first director of KNAO**

- → The construction plan of Korean radio telescope and the radio astronomy lecture at Seoul National University
- May 1980 : The budget for the construction plan of radio telescope was submitted
 - The site purchase budget of the observatory was secured

Awarded the first director's appointment letter of KNAO (1975 Jul.)

Observation band and contract of radio telescope

- → In consideration of the global development trend and investment efficiency, it was decided to observe **mm wave** rather than cm.
- → ESSCO's 14m radio telescope system of USA (same type as FCRAO telescope)

Dec. 1981 : The contract was signed with ESSCO

Installation, Supplement of system facilities, and Commissioning of 14 m Radio Telescope

Oct. 1985 : Start of antenna & Radome installation of 14 m telescope

Mar. 1986 : Restructuring from KNAO to ISSA, reorganization from cosmic radio wave obs. and research lab. to Taeduk Radio Astronomy Observatory (TRAO)

Feb. 1987 : Completion of **installation of** whole 14 m radio telescope system : RXs, spectrometers, S/W

Mar. 1987 – May 1989 : The first light from

Orion KL with 14m telescope (May 1987), complement of system equipment, commissioning (pannel adjustment, performance measurement, test obs. etc)

Nov. 1989 : Start of astronomical obs. and open use to Korean astronomy community

Installation of 14m telescope (Oct. 1985)

TRAO hanging ceremony (Mar. 1986)

TRAO Receivers at Early Stage

- 85~116 GHz Schottky-barrier diode mixer RX (Tsys ~500 K at 86 GHz) from Millitech, USA
- 85~116 GHz single-sideband SIS RX (Tsys ~420 K at 86 GHz) : First SIS RX developed by Dr. S.-H. Han in 1993
- 124~174 GHz double-sideband Schottky-barrier diode mixer RX (SSB Tsys : from 600 to 1000 K): from German RPG company in 1993
- 100/150 GHz dual-channel SIS receiver developed by Dr. S.-T. Han (1996-98)
- \rightarrow Both SiO J=2-1 and J=3-2 (v=1, 2, 3) masers were observed from 1998 simultaneously
- → SSB Tsys : ranged from 200 K to 400 K at 100 GHz, 400 K to 800 K at 150 GHz band
- → Springboard for the development of the KVN 4-channel receiver

Sciences with TRAO 14 m Tel. : 100/150 GHz RXs and 100 GHz Multibeam Receivers

 ■ Molecular clouds, star formation activity and evolution, evolved stars, Galactic center etc. ➤ Mapping and survey of thermal and maser lines
 ○ Publications (1985-2021, including papers on system) : ~107
 ○ PhD/MS thesis : ~9/18

HCN obs. toward Galactic Center Region : C. W. Lee, 1996

- Since 2009, large area obs. using the multibeam Rxs QUARRY and SEQUOIA (4x4 array), operating at 85 - 115 GHz range
- TRAO KSP (Key Science Program) (2016-2019)
 C. W. Lee (FUNS: Filaments, the Universal Nursery of Stars)
 J. E. Lee (TIMES: mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale)
 T. Liu (TOP: TRAO Observations of Planck cold clumps)
- Since 2020, Large Program and General Program
- 5 -13 proposals are carried out annually ► ~4 papers/yr

Obs. of SiO J=2-1 and J=3-2 emission in late-type stars : *S.-H. Cho et al.* 1998

SRAO 6 m Radio Telescope at SNU Campus

- Seoul Radio Astronomy Observatory (SRAO) was opened in April 2002 based on the 6 m radio telescope installed at Seoul National Univ. campus
- Antenna : 6.1 m in diameter (HPBW~120" at 100 GHz),
- Receivers & Spectrometer : 85-115 GHz SIS Rx (Tsys=500~800 K), 210-270 GHz SIS Rx (since 2013), autocorrelation spectrometer

I Rxs and SW were developed by graduate students

- Sciences with the SRAO 6 m tel. : Molecular clouds, SNRs etc.
- Interaction between the SNR HB 21 and molecular clouds, D.Y. Byun, B.-C. Koo et al. 2006, ApJ, 637, 283

Korean VLBI Network : Construction Period (2001-2008)

 Discussion of the next new project after the 14m radio telescope from the mid-1990s
 → KVN project was promoted to have a global competitiveness by

observing wavelengths up to millimeter wave.

- 2000 : Secure budget for KVN project (21 m x 3 tel.)
- 2001 : Site selection
- **2004** : Contract of Antenna Purchase
- 2006 : Completion of KVN Ulsan observatory building
- 2007 : Installation of KVN Ulsan Telescope
- **2008** : Installation of KVN Tamna and Yonsei Telescopes

Telescope Installation and Completion Ceremony in 2008

Oct. 2008 KVN Yonsei

KVN

Mar. 2007 lifting of KVN Ulsan tel

Dec. 2008, KVN completion ceremony (KVN Ulsan)

Test Obs. and Regular Operating Period : 2009 ►

- 2009 2010 : Test observations of single dish and, 22/43 GHz fringe detection from KVN 3 stations , 22/43 GHz fringe detection between KVN and Japanese VERA stations, Start of KVN single dish research
- 2011 : Installation of 86/129 GHz RXs and test obs.
- 2012 : Simultaneous fringe detection at 22/43/86/129 GHz bands, Completion of East Asian VLBI Research Center, Started scientific research using KVN
- 2013 2022 Present :
- Regular operation of KVN VLBI for astronomical purpose
- Perform of KVN KSP and KaVA/EAVN Large Program
- Open use to domestic, east Asia, and worldwide astronomical community twice a year
 - KVN website (http://kvn.kasi.re.kr)

22/43/86/129 GHz 4 Channel RX in 2012

2600

mm

600 mm x 600 mm

- Purpose for Simultaneous Multi-Frequency Observations
 - 22/43/86/129 GHz (Dual Pol : LCP & RCP)
- Conceptual Design in 2003
- Quasi-Optic Circuits
 - Design & Analysis
 - Beam Measurement
 - Installation and Test
 - 22/43 GHz in 2008-2009
 - 86/129 GHz in 2011-2012
- Development of Compact Triple band Receiver (K/Q/W, Apr 2015~ Sept. 2018)
- E-KVN and INAF Italy, worldwide standard system in mm-VLBI

By S-T Han et al.

43GHz Rx

22GHz Rx

2300 mm

86GHz Rx

129GHz Rx

Completion Ceremony of East Asia VLBI Research Center (Sept. 2012)

Daejeon HW Correlator (K-J Joint Correlator)

Correlation for 16 Stations of EAVN

• Commissioning from 2011 to 2012

- Linux Cluster
- KVN only data
- Operation from 2012

Completion Ceremony of **East Asia VLBI Research Center** (Sept. 2012, at KASI headquarters in Daejeon)

Combined Network of KVN and VERA : KaVA in 2010

Based on KASI-NAOJ MOU for VLBI Collaboration in Sept. 2002

- KaVA ang. resolution : ~1.2 mas (at 22 GHz) ~0.6 mas (at 43 GHz)
- Frequency : 22 & 43 GHz
- Baseline : 300 2300 km
- Formed in 2010
- ~1000 hrs /yr from 2013

East Asian VLBI Network

 KVN + VERA + NRO 45m + Tianma 65m (SHAO) + Nanshan 26m (XAO)
 The highest resolution of 0.5 mas at 22 GHz
 MOU for EAVN Collaboration in 2018
 Regular Operation from 2018
 22/43GHz (+ 6.7/8GHz)

KVN KSP and KaVA/EAVN Large Program

KVN Key Science Program (1st generation 2015 – 2019)

- Origins of Gamma-ray Flares in Active Galactic Nuclei : iMOGABA and MOGABA (PI : Sang-Sung Lee, KASI)
- The Plasma-physics of Active Galactic Nuclei : PAGaN (PI : Sascha Trippe, SNU)
- Simultaneous Monitoring Obs. of KVN 4 Bands toward Evolved Stars (PI : Se-Hyung Cho, KASI)

KVN Key Science Program (2nd generation 2020B –)

- The World's Largest Plasma Physics Study of AGN with KVN (PI : Sascha Trippe, SNU)
- Simultaneous Monitoring of SiO and H2O Masers toward Evolved Stars II (PI: Yungjoo Yun, KASI)

KaVA (EAVN) Large Program I. (2015-2017)

- Exploring the vicinity of super-massive black hole with KaVA : Intensive monitoring of M87 and Sgr A* (Co-PIs : Motoki Kino, NAOJ), B. W. Sohn, KASI)
- Expanded Study on Stellar Masers : ESTEMA (Co-PIs : Hiroshi Imai, Kagoshima Univ., Se-Hyung Cho, KASI)
- Understanding high-mass star formation through KaVA observations of water and methanol masers (Co-PIs : Hirota Tomoya, NAOJ, Kee-Tae Kim, KASI)

KVN Operation & Publications

KVN/KaVA/EAVN Proposals

Korea Astronomy & Space Science Institute

- Over 3000 hrs/yr (KVN only: 50%, overseas joint network:50%)
- ~40 proposals/yr
- ~20 papers/yr
- Remote Operation based on 10 GbE connection of KREONET
- Increasing Global Collaborations : EVN, GMVA, EHT

JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY

Vol. 48, No. 5, October 31, 2015

KVN SPECIAL ISSUE KVN Special Issue

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

Sang-Sung Lee, Do-Young Byun, Chung Sik Oh, Hyo Ryoung Kim, Jongsoo Kim, Taehyun Jung, Se-Jin Oh, Duk-Gyoo Roh, Dong-Kyu Jung, and Jae-Hwan Yeom	229
INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT ACTIVE GALACTIC	
NUCLEI II: FREQUENCY PHASE TRANSFER	
Juan-Carlos Algaba, Guang-Yao Zhao, Sang-Sung Lee, Do-Young Byun, Sin-Cheol Kang, Dae-Won Kim, Jae-Young Kim, Jeong-Sook Kim, Soon-Wook Kim, Motoki Kino, Atsushi Miyazaki, Jong-Ho Park, Sascha Trippe, and Kiyoaki Wajima	237
MONITORING OF GAMMA-RAY BRIGHT AGN: THE MULTI-FREQUENCY	
POLARIZATION OF THE FLARING BLAZAR 3C 279	
Sincheol Kang, Sang-Sung Lee, and Do-Young Byun	257
KVN MONITORING OBSERVATIONS TOWARD THE RECENT OUTBURST SYMBIOTIC STAR V407 CYGNI	
Se-Hyung Cho, Jaeheon Kim, and Youngjoo Yun	267
MEASURING THE CORE SHIFT EFFECT IN AGN JETS	
WITH THE EXTENDED KOREAN VLBI NETWORK	
Taehyun Jung, Richard Dodson, Seog-Tae Han, María J. Rioja, Do-Young Byun, Mareki Honma, Jamie Stevens, Pablo de Vicente, and Bong Won Sohn	277
PAGAN I: MULTI-FREQUENCY POLARIMETRY OF AGN JETS WITH KVN	
Jae-Young Kim, Sascha Trippe, Bong Won Sohn, Junghwan Oh, Jong-Ho Park, Sang-Sung Lee, Taeseok Lee, and Daewon Kim	285
PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES	
Junghwan Oh, Sascha Trippe, Sincheol Kang, Jae-Young Kim, Jong-Ho Park, Taeseok Lee, Daewon Kim, Motoki Kino, Sang-Sung Lee, and Bong Won Sohn	299
A SEARCH FOR AGN INTRA-DAY VARIABILITY WITH KVN	
Taeseok Lee, Sascha Trippe, Junghwan Oh, Do-Young Byun, Bong-Won Sohn, and Sang-Sung Lee	313

Extended-KVN from 2020

E-KVN : Construction of 4th New Telescope from 2020

4th Telescope (D~21 m) at PyeongChang Campus of SNU, Gangwon Province

- High surface accuracy (~80 um) for 230 GHz observation
- Two times more baselines from 3 to 6 combinations
- Amplitude self-calibration, Wideband M/F Image synthesis

KVN PyeongChang Site, SNU PyeongChang Campus (June 2, 2022)

Korea joined the East Asia ALMA consortium

- Aug. 2014, NINS (National Institutes of Natural Sciences) of Japan and KASI signed an agreement on the operations and development of ALMA
- Korea officially joined the East Asia ALMA consortium
- ALMA user community in Korea : Participated in obs. research from Cycle 2

ALMA development participation (2017-)

- \bigcirc GPU spectrometer development for TP array
 - Installation (Feb.), science verification (June) in 2022
- ALMA band 7+8 Rx development for ASTE : single-pixel, 275-500 GHz
 - Delivery to NAOJ in Oct. 2022

Cold cartridge assembly (ASTE 275-500 GHz Rx)

Korea Astronomy & Space Science I

ALMA participation (2021-2029) : total budget \$22M (250억) for 9 yrs

- GPU correlator development for ALMA Compact+Main arrays
- \bigcirc Single-pixel Rx development for ALMA band 8
- EA-ARC Korean node operation

Number of Proposals and Papers by ALMA User Community in Korea

 ALMA proposal : ~30/yr (~27% accepted)

Paper : ~25/yr (2018-2021)

By K.-T. Kim's PPT

Korea joined the EAO JCMT operation

- The JCMT is the first telescope operated by the EAO (East Asian Observatory), which was established by the EACOA (East Asian
 - Core observatories Association)
- Member institutions : NAOC China, ASIAA Taiwan, NAOJ Japan, and KASI Korea
- JCMT operation was transferred to the EAO in Mar. 2015.

The JCMT Image Credit: William Montgomerie

Sharing of operating expenses (USD 0.5-0.65 million/yr from 2015) and support of JCMT Board/TAC

Participation in the JCMT Large Programs

Publications : ~20 papers/yr (2019-2021)

Radio Astronomy Division Korea Astronomy and Space Science Institute

Organization of Division

- Taeduk Radio Astronomy Observatory (TRAO)
- Korean VLBI Network (KVN) Group
- Atacama Large Millimeter Array (ALMA) Group
- Radio Astronomy Technology Development Group
- Radio Astronomy Research Group

Manpower : 88 staffs (regular ; astronomer, engineer & technician etc. ~47, non-regular ; post-doc, graduate student, administrative support etc. ~41)

Annual budget (2021) : ~6.1 million USD including EKVN budget

University with Radio Astronomy Faculty

Universities	Faculties	Research Fields
UST-KASI (Univ. of Sci. & Tech.)	Sang-Sung Lee (Chief Major Professor) and other ~7 faculties	AGN, Star Formation, Evolved Stars, Radio Tel. System etc.
Seoul Nat. Univ.	Bon-Chul Koo (1992-2022.2), Yong-Sun Park (1999.9-), Sascha Trippe (2011.3-) Woojin Kwon (2020.3-)	Interstellar Matter, SNRs, Star Formation, Radio Tel. System, AGN
Kyung Hee Univ.	Jeong-Eun Lee (2017. 3-)	Astrochemistry, Star Formation
Yonsei Univ.	Aeree Chung (2010-)	Extragalactic Astronomy
Sejong Univ.	Sungeun Kim (2004-) Se-Heon Oh (2019-) Jeffrey A. Hodson (2020-)	Extragalactic Astronomy, AGN
Kyungpook Nat. Univ.	Jae-Young Kim (2021-)	Black Hole, High Energy Astronomy
Korea Nat. Univ. of Education	Jungjoo Sohn (2018-)	Star Formation

Future Prospect

- There will be two important directions for the development of radio astronomy in Korea.
 - One direction is to have international capabilities and competitiveness in the (sub)millimeter wavelength range through KVN/EKVN itself and joint network operation with KVN-based KaVA/EAVN, GMVA, and EHT.
 - The other is to secure global competitiveness through international participation in the world's most advanced large-scale observation facilities such as ALMA, SKA and ngVLA.
- Synergy of KVN with ALMA/K-GMT and joint studies with theorist will lead to higher impact research.
- Cultivating more interferometry experts in science and technology are required.

