Planetary Radar Astronomy and Green Bank's Impact

Jean-Luc Margot (UCLA) Patrick Taylor (NRAO)

First science with GBT

Accomplishments to date

Future prospects

Instruments

Arecibo

Goldstone

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

Ostro, Rev. Mod. Phys., 1993

Green Bank

Transmitter	Receiver	Relative sensitivity
DSS-14	DSS-14	1
	Arecibo	5.1
	GBT	2.3
	DSS-13	0.3
Arecibo	Arecibo	15
	GBT	5
	DSS-13	0.6
	DSS-14	2.2
DSS-43	Parkes	0.007
DSS-43 (400 kW)	Parkes	0.03
DSS-13	Arecibo	0.2
	GBT	0.08

Naidu et al., AJ 152, 2016.

Radar System

Radar System

Data-Taking Hardware & Software

720 MHz to 30 MHz downconverter

Baseband mixer

Low-pass filters

Data-taking unit

5, 10, 20 MHz clock distribution

JPL clone

The portable fast sampler 2 units at Arecibo, 4 units at Goldstone, 2 units at Green Bank

•	•	O UCLA-RADAR-Group/pfs: Porta ×	+		
←	→ Apps	C is github.com/UCLA-RADAR	R-Group/pfs		
Ç	2	Search or jump to 7	Pull requests Issues Marketplace	Explore	
Ę.	UC	CLA-RADAR-Group / pfs			⊙ Unw
	<> c	code 🕐 Issues 🖓 Pull requests	Actions III Projects III V	Niki 🔃 Security 🗠 Insights	愆 Setti
	ų	master - P 1 branch 📀 0 tags		Go to file Add file -	Code -
	1	jeanlucmargot Update README.md		545ff42 on Jan 8 🕚 196 c	ommits
		include	Improved installation procedure	10 mon	ths ago
		scripts	Improved installation procedure	10 mon	ths ago
		src	Changed bytestoskip in Iseek call from int	to long 7 mon	ths ago
		tests	Added Makefile for tests 10 months		ths ago
	ß	README.md	Update README.md	3 mon	ths ago
	Ľ	pfs.bib	Update pfs.bib	3 mon	ths ago
	∷≡	README.md			P
	Portable Fast Sampler Software				

These programs control the operation of the Portable Fast Sampler (PFS) systems that were in use at Arecibo (2000–2020), Goldstone (2001–2014), and Green Bank (2001–2017). They also provide tools for initial data analysis (unpacking, digital filtering, spectral analysis, de-hopping, etc). The code includes more than 8,000 lines of C code. A substantial fraction of this code has been incorporated in the software that is used to operate and process data from the NASA JPL dual channel agilent receiver (DCAR) data-taking systems installed at Goldstone and Green Bank

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Margot, JAI 10, 2021

Radar Waveforms

$\mathbf{x}(t) = \mathbf{A}(t) \cos[2\pi f_c t + \phi(t)]$

Radar Observables

- Time delay τ
- Doppler shift f
- Received power P_r
- Polarization properties S_i
- Interferometric phase ϕ

Space-time correlation function χ

Dynamical Quantities

Velocities

Distances

Orbits

Spin orientation

Spin rate

Naidu et al., Icarus 226, 2013

Ostro et al., Science 288, 2000

Morphology Images 3D shapes

Margot et al., JGR 104, 1999

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Topographic maps Surface change

Surface Properties

Ostro, Rev. Mod. Phys. 65, 1993

Benner et al., Icarus 198, 2008

Harmon, SSR 132, 2007

 \bigcirc

Roughness Dielectric constant

Composition

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Near-surface density

Interior Properties

view from +y Ostro et al., Science **314**, 2006

Mass Bulk density Moments of inertia

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Hudson et al., Icarus 161, 2003

Radar Measurements

- Velocities
- Distances
- Orbits
- Spin orientation
- Spin rate
- Mass
- Bulk density
- Moments of inertia

Images Surface change 3D shape Roughness

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Topographic maps

Dielectric constant Near-surface density Composition

Range-Doppler Imaging

Margot et al., IEEE TGRS 38, 2000

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Margot, JAI 10, 2021

Range-Doppler Imaging

Lunar south pole

87.5°S

Margot et al., IEEE TGRS 38, 2000

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

50 km

Range-Doppler Imaging and InSAR

Margot et al., IEEE TGRS 38, 2000

First Science Observations at GBT: Venus

Goal: measure the topography of several high-reflectivity, low-emissivity mountains to explain the relationship between surface emissivity, reflectivity, and altitude on Venus (PI: Don Campbell)

An Auspicious Start

Venus

24 Mar 2001

GB windy & no internet

Arecibo-GBT Radar Image of Venus

Maxwell Montes

National Radio Astronomy Observatory 520 Edgemont Road Charlottesville, VA 22903 http://www.nrao.edu

May 10, 2001

Contact:

Dave Finley, Public Information Officer (505) 835-7302 dfinley@nrao.edu

New Radio Telescope Makes First Scientific Observations

The world's two largest radio telescopes have combined to make detailed radar images of the cloud-shrouded surface of Venus and of a tiny asteroid that passed near the Earth. The images mark the first scientific contributions from the <u>National Science Foundation's</u> (NSF) new <u>Robert C. Byrd Green Bank Telescope</u> in West Virginia, which worked with the NSF's recently-upgraded <u>Arecibo telescope</u> in Puerto Rico. The project used the radar transmitter on the Arecibo telescope and the huge collecting areas of both telescopes to receive the echoes.

"These images are the first of many scientific contributions to come from the Robert C. Byrd Green Bank Telescope, and a great way for it to begin its scientific career," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "Our congratulations go to the scientists involved in this project as well as to the hard-working staffs at Green Bank and Arecibo who made this accomplishment possible," Vanden Bout added.

To the eye, Venus hides behind a veil of brilliant white clouds, but these clouds can be penetrated by radar waves, revealing the planet's surface. The combination of the Green Bank Telescope (GBT), the world's largest fully-steerable radio telescope, and the Arecibo telescope, the world's most powerful radar, makes an unmatched tool for studying Venus and other solar-system bodies.

"Having a really big telescope like the new Green Bank Telescope to receive the radar echoes from small asteroids that are really close to the Earth and from very distant objects like Titan, the large moon of Saturn, will be a real boon to radar studies of the solar system." said Cornell University professor Donald Campbell, leader of the research team.

Ten years ago, the radar system on NASA's Magellan spacecraft probed though the clouds of Venus to reveal in amazing detail the surface of the Earth's twin planet. These new studies using the GBT and Arecibo, the first since Magellan to cover large areas of the planet's surface, will provide images showing surface features as small as about 1 km (3,000 ft), only three times the size of the Arecibo telescope itself.

Venus may be a geologically active planet similar to the Earth, and the new images will be used to look for changes on Venus due to volcanic activity, landslides and other processes that may have modified the surface since the Magellan mission. The radar echoes received by both telescopes also can be combined to form a radar interferometer capable of measuring altitudes over some of the planet's mountainous regions with considerably better detail than was achieved by Magellan.

A portion of Maxwell Montes on Venus, imaged with the Arecibo-GBT radar system. This image shows detail as small as 1.2 kilometers. Courtesy Campbell et al., NRAO, NAIC, NSF.

Interferometric Fringes

Second Science Observations: 2001 EC16

Importance of Near-Earth Asteroids

Importance of Radar Astronomy

Orbit determination

adar Astronomy Physical characterization

Range Measurements

Fractional precision < 0.00000001

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

20 x better than optical

Time Interval of Reliable Trajectory Predictions (average case)

Without radar

With radar

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

\bullet = now

Trajectory Prediction Uncertainties

Trajectory propagation factor	Along-track effect, km
	0.400
(A) Galactic tide	-8400
(B) Numerical integration error	-9900
(C) Solar mass loss	+13300
(D) Solar oblateness (J2)	(+42100, +17600)
(E) 61 additional asteroids	-1.5×10^{6}
(F) Planetary mass uncertainty	$(+1.38, -1.54) \times 10^{6}$
(G) Solar radiation pressure	-11.2×10^{6}
Combined (A-G)	$(-11.0, -17.6) \times 10^{6}$
Yarkovsky effect only	$(+11.9, -71.0) \times 10^{6}$

Giorgini et al., Science 296, 2002.

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Fig. 1. Arecibo (2380 MHz, 13 cm) delay-Doppler echo-power image of 1950 DA on 4 March 2001, from a distance of 0.052 AU (22 lunar distances). Vertical resolution is 15 m, and horizontal resolution is 0.125 Hz (7.9 mm s⁻¹ in radial velocity).

Chesley et al., Science 302, 1739, 2003.

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

Bottke et al., AREPS, 2006.

Yarkovsky Effect

Yarkovsky Effect

$$\frac{da}{dt} = \pm \xi \frac{3}{4\pi} \frac{1}{\sqrt{a}} \frac{1}{1 - e^2} \frac{L_{\odot}}{c\sqrt{GM_{\odot}}} \frac{1}{D\rho}$$

Yarkovsky efficiency

Diameter

Density

Greenberg et al., AJ 159, 2020.

Near-Earth Asteroid 2000 ET70

Binary Asteroid 2000 DP107

Period	(1.755 +/- 0.007) days
Semi-Major axis	(2.620 +/- 0.16) km
Eccentricity	~0.010
System Mass	(4.6 +/- 0.5) x 10 ¹¹ kg
Mass ratio	~1:20
Secondary spin	Synchronous

Margot et al., Science **296**, 2002. Naidu et al., AJ **150**, 2015.

Component Masses and Volumes

	mass	(10 ¹¹ kg)	% of system
Primar	У	4.8	96.3
Secon	dary	0.2	3.7
Margot et al., Science 296 , 2002.			

volume (1 Primary 3 Secondary $\left(\right)$

Naidu et al., AJ 150, 2015.

11	3.6
04	96.4
0 ⁸ m ³)	% of system

Binary Asteroid 1999 KW4

► Volume to 9%

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

View from +Y

View from +Z

Acceleration Magnitude (mm/s²)

Ostro et al., Science 314, 2006.

Binary NEAs Form by Spin-up

1998 ST27 Benner et al. 1999 KW4 Ostro et al. 2002 BM26 Nolan et al.

Primaries are spheroidal and fast rotators. Spin-up and mass shedding. Margot et al., Science 296, 2002.

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

2000 UG11 Nolan et al.

Spin-up Mechanism is YORP

Fig. 2. Additional rotation phase required to link 20 optical light curves (2) from 2001 to 2005 using a shape model with pole (180°, -85°) fit to the 2001 light-curve data. The fitted curve is quadratic in time: 0.5 $\dot{\omega}t^2$, where $\dot{\omega}$ is the rate of change of the spin rate and t is time since the initial epoch of 0^h UT on 27 July 2001. Phases have conservative uncertainties of 10° because of their dependence on the exact shape and orientation of the asteroid.

Taylor et al., Science 316, 2007.

Spin Dynamics

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

 $\Delta E_{chaos} \sim 0.4$ E_0

(Steinberg & Sari 2009)

Binary NEA 1991 VH (Dp 650 m, Ds 280 m)

Binary Asteroid 2004 BL86

>2015 (3.1 LD) Goldstone to GBT Primary ~ 350 m Secondary ~ 70 m ~14 h orbit period

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

3.75 m resolution

Courtesy Patrick Taylor

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Courtesy Patrick Taylor 2018 Jun 25 UT

Tumbling Asteroid 2003 SD220

2018 (7 LD) > 2 km ~12 day period Top: DSN-GBT (X) Bottom: AO-GBT (S)

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Courtesy Patrick Taylor

History of Asteroid Detections http://radarastronomy.org

No Evidence for Thick Deposits of (Clean) Ice at the Lunar South Pole

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

Campbell et al., *Nature* **443**, 2006

Mapping of Pyroclastic Deposits

Stacy 1993

GBO@65 - Sept. 2022 - Jean-Luc Margot (UCLA)

Carter et al., JGR, 2009

Mapping of the Moon at 70 cm Wavelength

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Campbell, PASP, 2016

Mapping of the Moon at 70 cm Wavelength

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Lacus Somniorum

Daniell

Posidonius

Bessel A

Deseilligny

Dawes

Campbell, PASP, 2016

Radar Speckle Tracking

er antenna at Goldstone, Californ

Goldstone, CA

Green 1962, 1968 Holin 1988, 1992 Margot 2007, 2012

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Green Bank, WV

Space-Time Correlations

Mercury is in Cassini State 1

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Margot et al., *Science* **316**, 2007

Mercury's Core is Molten

Margot et al., *Science* **316**, 2007

Measurement of Mercury's Core Size

Margot et al., in Mercury – The view after MESSENGER (eds S. C. Solomon, B. J. Anderson, L. R. Nittler), 2018

Venus Spin Axis Orientation

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Davies et al. 1992 Magellan radar (46") Konopliv et al. 1999 Magellan gravity (14")

Earth-based radar (3") (80 m on the surface)

Margot et al., *Nature Astronomy* **5**, 2021.

Venus Moment of Inertia

squares	Bootstrap mean	Std. dev.
2.73911	272.73912	0.0008
7.15105	67.15100	0.0007
-44.89	-44.58	3.3
0.3350	0.3373	0.024
5.972	6.013	0.43

Venus Imaging

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Campbell and Campbell, PSJ, 2022
Surface change
Long-term spin rate monitoring
Radar polarimetry

Europa and Ganymede

A New Era for Planetary Radar

Transmit from low-power (~1kW) Ku-band (13.9 GHz) prototype at GBT prime focus (with Raytheon) and receive at VLBA antenna in Hancock, NH.

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Courtesy Flora Paganelli

Wilkinson et al., MJ, 2022

GBO@65 – Sept. 2022 – Jean-Luc Margot (UCLA)

Resolution: ~5 m

Conclusions

The Green Bank Observatory has enabled radar studies of the trajectories, spin states, surfaces, morphologies, and interiors of near-Earth asteroids, the Moon, Mercury, Venus, and Galilean Satellites.

The planned radar capability holds the promise of taking radar observations to new levels with notable increases in resolution and sensitivity.