Giant pulses to nanohertz gravitational waves: the past, present, and future of pulsar research at the Green Bank Observatory

Staelin & Reifenstein, 1968, Science, 162, 3861

Maura McLaughlin, West Virginia University (maura.mclauglin at mail.wvu.edu)

Co-Director, NANOGrav Physics Frontiers Center

GBO 65th Anniversary

Thank you GBO!

Since my first trip to use the 140-ft in 1996, the GBO has played an incredibly important role in my personal and professional life!

GBO 65th Anniversary

Summer 2012 Pulsar Search Collaboratory Camp

Fall 2018 NANOGrav Meeting

The GBC) Pulsar	Greatest H	lits
here are ~87	3 GBO pulsa	r papers with ~	53,92
2010Natur.467.1081D A two-solar-mass neu Demorest, P. B.; Pennuc	2010/10 cited: 2793 tron star measured using S ci, T.; Ransom, S. M. <i>and 2</i>	E ∷ Shapiro delay	
2020NatAs472C Relativistic Shapiro de pulsar Cromartie, H. T.; Fonseca	2020/01 cited: 858 lay measurements of an e a, E.; Ransom, S. M. <i>and</i> 24	Image: Second	
2006Sci31497K Tests of General Relat Kramer, M.; Stairs, I. H.;	2006/10 cited: 664 ivity from Timing the Doub Manchester, R. N. <i>and 12 m</i> o	le Pulsar ore	B
2006Sci311.1901H A Radio Pulsar Spinnin Hessels, Jason W. T.; Ra	2006/03 cited: 559 ng at 716 Hz nsom, Scott M.; Stairs, Ingrid	E ₩ S H. and 3 more	
2010CQGra27h4013H The International Pulsa wave detector Hobbs, G.; Archibald, A.;	2010/04 cited: 443 ar Timing Array project: usi Arzoumanian, Z. and 55 mor	ng pulsars as a gravitational	
2020ApJ905L34A The NANOGrav 12.5 y Gravitational-wave Ba Arzoumanian, Zaven; Ba	2020/12 cited: 438 r Data Set: Search for an l ackground aker, Paul T.; Blumer, Harsha	Isotropic Stochastic	Tł te
2016ApJ832167F The NANOGrav Nine-ye Binary Millisecond Puls Fonseca, Emmanuel; Penr	2016/12 cited: 435 ear Data Set: Mass and Geo ars nucci, Timothy T.; Ellis, Justin	E ₩ Sometric Measurements of A. and 17 more	na ar
2009Sci324.1411A A Radio Pulsar/X-ray Bi Archibald, Anne M.: Stairs	2009/06 cited: 423 inary Link , Ingrid H.; Ransom, Scott M.	and 15 more	

GBO 65th Anniversary

he GBO has made amazing contributions in pulsar searching, ests of GR, neutron star equations of state, searches for anohertz frequency gravitational waves, neutron star populations nd evolution, pulsar emission mechanisms, and more!

The Past

GBO 65th Anniversary

1968: Pulsating Radio Sources near the Crab Nebula

The first observation to show that supernovae cause pulsars!

GBO 65th Anniversary

294 Citations

Staelin & Reifenstein, 1968, Science, 162, 3861

Abstract

Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 ± 0.03 and $1.74 \pm 0.02 \times 10^{20}$ electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

1972: Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field

Manchester 1971, ApJS, 23, 283

GBO 65th Anniversary

Manchester 1972, ApJ, 172, 43

142 and 108 Citations

$$\langle B_{||} \rangle = \int_{\text{PSR}}^{\oplus} n_e \boldsymbol{B} \cdot d\boldsymbol{s} / \int_{\text{PSR}}^{\oplus} n_e d\boldsymbol{s} = \text{RM}/(0.81\text{DM}).$$

TABLE 1 **ROTATION AND DISPERSION MEASURES**

PSR	<i>l</i> (deg.)	b (deg.)	Frequency Range (MHz)	DC (10 ¹⁶ Hz)	DM (cm ⁻³ pc)	RM (rad m ⁻²)) (mi
0329+54	145	- 1	280-485	11.110 ± 0.002	26.776 ± 0.005	-63.7 ± 0.4	-2.9
$0525 + 21 \dots$	184	7	281-421	$21.07 \pm 0.05^{\dagger}$	50.8 $\pm 0.1^{\dagger}$	-39.6 ± 0.2	-0.9
0531+21	185	- 6	365-414	23.5705‡	56.805	-42.3 ± 0.5	-0.9
0809+74	140	+32	365-421	2.42 ± 0.03	5.84 ± 0.06	-11.7 ± 1.3	-2.5
0818-13	236	+13	365-421	16.97 ± 0.04	40.9 ± 0.1	-2.8 ± 1.7	-0.0
0834+06	220	+26	365-414	5.35 ± 0.02	12.90 ± 0.04	$+24.5\pm2.5$	+2.3
0950+08	229	+44	280-421	1.230 ± 0.003	2.965 ± 0.007	$+ 1.8 \pm 0.5$	+0.7
1133+16	242	+69	280-421	2.006 ± 0.003	4.834 ± 0.007	$+ 3.9 \pm 0.2$	+0.9
1237+25	252	+87	365-414	3.840 ± 0.004	9.254 ± 0.008	-0.6 ± 0.4	-0.0
1508+55	91	+52	281-421	8.133 ± 0.005	19.60 ± 0.02	$+ 0.8 \pm 0.7$	+0.0
1604-00	11	+36	365-410	4.45 ± 0.02	10.72 ± 0.05		
1642-03	14	+26	365-421	14.816 ± 0.004	35.71 ± 0.01	$+16.5\pm2.5$	+0.5
1706–16	6	+14	365-421	10.37 ± 0.03	24.99 ± 0.08		
1818 —04	26	+ 5	365-421	35.06 ± 0.04	84.48 ± 0.08	$+70.5\pm7.5$	+1.0
1911–04	31	- 7	365-414	37.10 ± 0.02	89.41 ± 0.04	• • •	
1929+10	47	- 4	365-410	1.318 ± 0.001	3.176 ± 0.003	-8.6 ± 1.8	-3.3
1933+16	52	- 2	365-421	65.78 ± 0.02	158.53 ± 0.05	-1.9 ± 0.4	-0.0
2016+28	68	- 4	365–421	5.88 ± 0.01	14.16 ± 0.03	-34.6 ± 1.4	-3.0
$2021 + 51 \dots$	88	+ 8	365-414	9.369 ± 0.002	22.580 ± 0.004	$- 6.5 \pm 0.9$	-0.3
2045 - 16	31	-33	281-410	4.775 ± 0.004	11.51 ± 0.01	-10.8 ± 0.4	-1.1
2111 + 46	89	- 1	365–414	58.6 ± 0.2	141.4 ± 0.4	-223.7 ± 2.2	-1.9
$2217 + 47 \dots$	98	- 8	365-414	18.06 ± 0.02	43.52 ± 0.05	-35.3 ± 1.8	-1.0
2303+30	98	-27	365-410	20.70 ± 0.05	49.9 ± 0.2		

* A positive field component is directed toward the observer.

‡ Richards et al. (1970).

† Manchester (1971b).

 $\langle B_{l,e} \rangle^*$ crogauss) $\begin{array}{r} 3 \pm 0.02 \\ 60 \pm 0.006 \\ 92 \pm 0.02 \end{array}$ 5 ± 0.3 08 ± 0.05 ± 0.3 ± 0.3 99 ± 0.06 $\begin{array}{r}
 5 \\
 7 \\
 \pm 0.05 \\
 \pm 0.04
 \end{array}$ 58 ± 0.09 ± 0.1 ± 0.7 15 ± 0.003 ± 0.2 6 ± 0.05 15 ± 0.04 $\begin{array}{c} -0.03 \\ 95 \pm 0.03 \\ 00 \pm 0.05 \end{array}$ · · ·

1985: A search for low-luminosity pulsars

Dewey et al. 1985, ApJ, 294, L95

Found a fall-off at periods below 300 ms, but had little sensitivity to millisecond pulsars

GBO 65th Anniversary

169 Citations

34 new pulsars and 49 known pulsars

1986: Space Velocities from Scintillation

Cordes et al. 1986, ApJ, 311, 183

GBO 65th Anniversary

240 Citations

Important implications for supernova physics!

1990: Constructing a Pulsar Timing Array

Arrival time data from a spatial array of millisecond pulsars can be used (1) to provide a time standard for long time scales, (2) to detect perturbations of the Earth's orbit, and (3) to search for a cosmic background of gravitational radiation. In this paper we first develop a polynomial time series representation for these three effects that is appropriate for analysis of the present data with its limited degrees of freedom. We then describe a pulsar timing array program that we have established at the National Radio Astronomy Observatory 43 m telescope with observations of PSR 1620-26, PSR 1821-24, and PSR 1937+21.

Analysis of data from several observatories around the globe will provide the best possible solution for these effects.

Foster and Backer 1990, ApJ, 361, 300

GBO 65th Anniversary

Credit: APS/Carin Cain

1993: The Masses of Two Binary Neutron Star Systems

GBO 65th Anniversary

1994: Timing Behavior of 96 Radio Pulsars

Arzoumanian et al. 1994, ApJ, 422, 671

GBO 65th Anniversary

205 Citations

$$\Delta(t) = \log\left(\frac{1}{6v} \,|\, \ddot{v}\,|\, t^{\frac{1}{6}}\right)$$

Found strong evidence for correlation of spin-down noise with period derivative

1995: Giant Pulsars from the Crab Pulsar: A Joint Radio and Gamma-Ray Study 188 Citations

Flux distribution of Crab giant pulses

Radio and IR (top) and X-ray and Gamma-ray (bottom) pulse profiles

Lundgren et al. 1995, ApJ, 453, 433

GBO 65th Anniversary

Giant pulses are emitted randomly, with no apparent correlation between gamma-ray and radio flux - implications for radio coherence mechanisms!

1999: The Triple Pulsar System PSR B1620-26 in M4

Timing residuals before (top) and after (bottom) accounting for a planet orbiting white dwarf and pulsar

Probability distribution for planet mass

Thorsett et al. 1999, ApJ, 453, 433

GBO 65th Anniversary

2005: Twenty-One Millisecond Pulsars in Terzan 5 **Using the Green Bank Telescope**

267 Citations

GBO 65th Anniversary

Mass constraints from periastron advance for one binary MSP

2006: Tests of General Relativity from **Timing the Double Pulsar**

Mass-Mass Diagram

Kramer et al. 2006, Science, 314, 97

GBO 65th Anniversary

Shapiro delay "shape" parameter is consistent with GR to 0.05%

2008: Relativistic Spin

Eclipse of pulsar A fit to pulsar B transparency windows

GBO 65th Anniversary

Breton et al. 2008, Science, 314, 5796

Measured geodetic precession rate consistent with GR to 13%

2009: A Radio Pulsar/X-ray Binary Link

Eclipse profiles, pulse profiles at different frequencies, along with DM measurements

Archibald et al. 2009, Science, 324, 5933

GBO 65th Anniversary

First millisecond pulsar to show evidence for recent accretion, based on optical observations of companion.

Proof of "recycling" hypothesis for MSP formation.

423 Citations

2010: A two-solar-mass neutron star 2793 Citations measured using Shapiro delay

GBO 65th Anniversary

Mass constraints on J1614-2230 rule out most "exotic" equations of state

Demorest et al. 2010, Nature, 467, 1081

2014: The Green Bank Northern Celestial Cap Pulsar Survey

The survey is currently at 195 pulsars, including 33 MSPs.

GBO 65th Anniversary

145 Citations

Stovall et al. 2014, ApJ, 791, 1

2020: Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar 861 Citations

Cromartie et al. 2020, Nature, 4, 72

GBO 65th Anniversary

Measured through NANOGrav data and special campaign at superior conjunction

2021: Strong-Field Gravity Tests with the Double Pulsar

GBO 65th Anniversary

Kramer et al. 2021, PRX, 11, 4

GBO 65th Anniversary

North American Nanohertz Observatory for GWs NANOGrav

Includes over 150 students and scientists at over 50 institutions. Formed in 2008, and supported by the NSF PIRE program (2010-2016), as an NSF Physics Frontiers Center (since 2015), and through multiple other NSF AST and PHYS awards.

NANOGrav meeting at the CCA in NYC, March 2022 http://nanograv.org

GBO 65th Anniversary

The International Pulsar Timing Array (IPTA)

Includes four regional collaborations in North America, Europe, Australia, and India from institutions in 11 countries. Supported by NSF PIRE (2010-2016), NSF IRES (2017-present), and NSF AccelNet (awarded in 2021).

IPTA Student Workshop in at NCRA, Pune, India, in June 2019

http://ipta4gw.org

GBO 65th Anniversary

How do galaxies evolve through cosmic time?

GBO 65th Anniversary

Big Bang

Afterglow light pattern

Recombination

Dark ages

First stars

First galaxies

Image credit: NASA, ESA, STScI, L.Sampson [modified]

How do galaxies evolve through cosmic time?

They grow through mergers.

GBO 65th Anniversary

Big Bang

Afterglow light pattern

Recombination

Dark ages

First stars

First galaxies

Image credit: NASA, ESA, STScI, L.Sampson [modified]

How do galaxies evolve through cosmic time?

Final parsec problem! How do galaxies get to these close separations?

GBO 65th Anniversary

Big Bang

Afterglow light pattern

Recombination

Dark ages

First stars

First galaxies

Image credit: NASA, ESA, STScI, L.Sampson [modified]

Pulsar Timing Array

Gravitational waves (GWs) produce correlated changes in pulse arrival times.

These changes will have an earth term and a pulsar term.

We can search for individual sources of gravitational waves and a stochastic background of all the sources in the universe.

We do this by searching for specific angular correlations in arrival times.

NANOGrav's Observing Program

We observe roughly 70 pulsars at frequencies from 400 MHz to 3 GHz using the GBT (funded by Moore and NSF) and CHIME at daily (CHIME) to monthly (GBT) cadence. We also observe about 10 pulsars with the VLA and FAST.

Green Bank Telescope, West Virginia 100 m diameter

GBO 65th Anniversary

Very Large Array, New Mexico 120 m effective diameter

300 m diameter (until August 2020)

CHIME Telescope, British Columbia, Canada 100 m effective diameter

FAST Telescope, Guizhou, China 500 m diameter September 2022

Pulsar Timing

At every epoch, we measure a time of arrival.

Credit: David Champion

GBO 65th Anniversary

We subtract this time of arrival from that predicted by a model to calculate a residual.

Fitting for a timing model

rotation period rotation period derivative timing noise

Keplerian orbital elements relativistic orbital elements

kinematic perturbations of orbital elements (secular and annual phenomena)

dispersion measure dispersion meas. variations

Credit: David Nice

(sun) position proper motion parallax solar electron density

GBO 65th Anniversary

	J1713 + 07
MJD range Number of ToAs Weighted rms timing residual (μ s) Reduced χ^2 Reference epoch Units	48849 - 57 17487 0.24 0.99 55000 TCB
Right ascension, RA (J2000) Declination, DEC (J2000) Proper motion in RA (mas yr ⁻¹) Proper motion in DEC (mas yr ⁻¹) Spin frequency, f (s ⁻¹) \dot{f} (s ⁻²) Parallax, π (mas) Dispersion measure, DM (cm ⁻³ pc) DM (cm ⁻³ pc yr ⁻¹) DM (cm ⁻³ pc yr ⁻²)	$\begin{array}{r} 17:13:49.5331\\ +07:47:37.49\\ 4.924(1\\ -3.913(2\\ 218.811840417\\ -4.08386(5) \times\\ 0.83(2)\\ 15.969(3\\ -2(3) \times 1\\ -3(3) \times 1\end{array}$
Binary model Orbital period, $P_{\rm b}$ (d) Epoch of periastron, T_0 (MJD) Projected semi-major axis, x (lt-s) Longitude of periastron, ω_0 (deg) Eccentricity, e Companion mass, $m_{\rm c}$ (M $_{\odot}$) Derivative of $P_{\rm b}$, $\dot{P}_{\rm b}$ Epoch of ascending node, $T_{\rm asc}$ (MJD) $\epsilon_1 = e \sin \omega_0$ $\epsilon_2 = e \cos \omega_0$ Longitude of ascending node, Ω (deg)	T2 67.8251310 52811.482 32.3424220 176.1987 7.49402(4) × 0.289(7) $5(1) × 10^{-1}$ - 92(2)
Inclination angle, <i>i</i> (deg) Perera et al, 2019, MNRAS	5, 490, 4 71.6(4)

NANOGrav's Data Releases

Our data releases include times of arrival measured to *sub-microsecond* precision, timing models, and pulse profiles for each pulsar.

Our 12.5-yr release has 47 pulsars and our 15-yr release will have 67 pulsars.

Publicly available at http://data.nanograv.org

The NANOGrav Collaboration, 2018, ApJS, 235, 37 The NANOGrav Collaboration, 2021, ApJS, 252, 48 The NANOGrav Collaboration, 2021, ApJS, 252, 53

GBO 65th Anniversary

Wahl et al. 2022, ApJ, 926, 168

We are sensitive to *low-frequency* gravitational waves

- We are sensitive to *long* GW wavelengths, or low GW frequencies.
- Our strain sensitivity is roughly
- $\Delta t/T \simeq 200 \text{ ns}/15 \text{ yrs} \simeq 10^{-15}$

Ransom et al., 2019, NANOGrav Decadal Whitepaper, arXiv: 1908.05356

GBO 65th Anniversary

We search for GWs by cross-correlating pulsar timing residuals

The NANOGrav Collaboration, 2021, APSS, 252, 48

Residual RMS values range from 0.06 to 1.4 microseconds.

GBO 65th Anniversary

IPTA Residuals

IPTA Second Data Release includes data for 65 MSPs timed by NANOGrav, European EPTA, and Australian PPTA for timespans of > 30 yrs.

Publicly available at http://ipta4gw.org/data-release/

RMS residuals range from 0.2 - 10 microseconds.

Perera et al., for the IPTA Collaboration, 2019, MNRAS, 490, 4, 48

GBO 65th Anniversary

We search for multiple types of GW signatures

GW signatures pre (top) and post (bottom) timing fit for a stochastic background (left) and single source (right) in the residuals for three different pulsars.

GBO 65th Anniversary

Verbiest, Oslowski, & Burke-Spolaor, 2021, arXiv: 2101:10081

Sources of Noise

Intrinsic	Noise source	Achromatic?	Correlated in time?	Correlated in space?	Quadrupolar?
	Pulsar rotational irregularities	✓	\checkmark	×	×
	Pulse jitter	\checkmark	×	×	×
Extrinsic	Scattering and dispersion measure variations	×	\checkmark	×	×
	Planetary ephemerides	\checkmark	\checkmark	\checkmark	×
	Clock errors/offsets	✓	\checkmark	×	×
	GW background	\checkmark	✓	\checkmark	\checkmark

$$P_{\rm RN}(f) = \frac{A_{\rm RN}^2}{12\pi^2} f_{\rm yr}^{-3} \left(\frac{f}{f_{\rm yr}}\right)^{-\gamma_{\rm RN}}$$

GBO 65th Anniversary

$$P_{\rm DM}(f,\nu) = \frac{A_{\rm DM}^2}{12\pi^2} f_{\rm yr}^{-3} \left(\frac{f}{f_{\rm yr}}\right)^{-\gamma_{\rm DM}} \left(\frac{1400\,{\rm MHz}}{\nu}\right)^2$$

The Hellings and Downs Correlation

Prediction for an isotropic, stochastic gravitational wave background assuming general relativity is correct.

Maximum correlation of 0.5 as "pulsar terms" are uncorrelated.

We will detect the effects of GWs on the Earth!

GBO 65th Anniversary

Hellings & Downs, 1983, ApJ, 265, 39

In 2020, we made a significant detection... of *something*!

We detect common red noise with high significance. We cannot make it go away.

However, we can not yet detect quadrupolar angular correlations.

GBO 65th Anniversary

The NANOGrav Collaboration, 2020, ApJ, 905, 34

It is consistent with a population of supermassive black hole binaries

GBO 65th Anniversary

Under simplest assumptions, we expect a "red" spectrum with a power-law index of 13/3.

The NANOGrav Collaboration, 2020, ApJ, 905, 34

It is also consistent with primordial gravitational waves or cosmic strings

GBO 65th Anniversary

We expect "red" spectra with power-law indices of 4-7 (but likely lower amplitudes ...)

The NANOGrav Collaboration, 2020, ApJ, 905, 34

Seen in EPTA, PPTA, and IPTA data also!

When will noise become signal?

Pol et al. 2021, ApJ, 911,34

We should detect angular correlations at a S/N of 4-7 in the data set we will publish within the next year. We will likely not be able to identify the source of the background.

S/N will be even higher in combined International Pulsar Timing Array data!

GBO 65th Anniversary

Eleven-year Single Source Results

Limit is highly direction dependent!

$$\begin{array}{ccccccc} 1 & & & & & & & \\ 20 & & 40 & & 60 & & 80 & & 100 & & 120 \\ & & & D_{95} \times \left(\frac{\mathcal{M}}{10^9 M_{\odot}}\right)^{5/3} \times \left(\frac{f}{8 \times 10^{-9} \,\mathrm{Hz}}\right)^{2/3} \,[\mathrm{Mpc}] \end{array}$$

The NANOGrav Collaboration, 2019, ApJ, 880, 116

GBO 65th Anniversary

No Virgo SMBHBs with $M > 1.6 \times 10^9$ solar masses

Multi-Messenger GW Searches

Nearby (85 Mpc) galaxy which shows evidence for binary black hole at core.

Performed GW search with EM priors.

The NANOGrav Collaboration, 2020, ApJ, 900, 2

GBO 65th Anniversary

Copyright (c) NRAO/AUI 1999

We will rule out the published mass estimate (or make a detection!) a few years.

We expect single source detections within ~5 years!

GBO 65th Anniversary

The next IPTA data release will also be the most sensitive dataset in the world for single source searches.

After five years of LSST observations, tens of binary candidates should be identified!

> Plot based on Kelley et al., 2018, MNRAS, 477, 964 and The NANOGrav Collaboration, 2020, ApJ, 900, 102

GBO 65th Anniversary

The Future

Grow to 200 MSPs by 2030

Our GW sensitivity is linearly dependent on the number of pulsars. We also need more uniform sky coverage.

Searches for pulsars are critical! High-school and undergraduate students in the NSF-DRL and NSF-OAI funded Pulsar Search Collaboratory program are contributing towards this important goal!

PSC Camp at the Green Bank Observatory GBO 65th Anniversary

PSC Capstone at West Virginia University *15 September 2022*

Commission the GBT's wideband receiver

GBO 65th Anniversary

Pulse Phase

Improve Our Understanding and **Mitigation of Noise Sources**

Right: Improvement in timing for simulated MSP population

GBO 65th Anniversary

Left: PSR B1937+21 before and after CS; Middle: Dynamic Spectra before and after CS;

Incorporate CHIME data into our datasets

Daily cadence complementary to GBT.

CHIME/Pulsar Collaboration, 2021, ApJSS, 255, 1

GBO 65th Anniversary

Not yet clear how many pulsars we can improvement will be.

Grow the IPTA

Current dataset includes data from seven telescopes in six countries.

Future datasets may include data from 11 telescopes in 16 countries.

NSF AccelNet funded project manager and cyber-infrastructure specialist will enable this growth!

GBO 65th Anniversary

Summary

- pulsar astronomy since its inception in 1967.
- We are currently timing 70 MSPs with Green Bank, VLA, and CHIME and collaborating internationally to compensate for AO loss.
- Our 12.5-yr dataset and those of other PTAs and the IPTA shows strong evidence for a ightarrowcommon noise process consistent with gravitational waves. Angular correlations should be detectable in our 15-yr dataset, if signal is indeed due to gravitational waves.
- Measurement of the amplitude and spectrum will provide unique insights into galaxy formation ightarrowand evolution.
- Sensitivity has increased dramatically due to additional pulsars and improved instrumentation. Will continue to increase with even more pulsars, wider bandwidths, better mitigation of noise, and continued telescope access. Let's bring on another 65 years!

GBO 65th Anniversary

The Green Bank Observatory has played leading and absolutely critical roles in every area of