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Let’s start at the beginning...detection of Formaldehyde

The hunt for more complex molecules

e Glycine
e Dihydroxyacetone
e Urea
Interstellar mapping campaigns
e Acetic acid

e Acetone
e Formic acid/methyl formate
e C,H,O, isomers
What are the limits to molecular complexity?

| | |
Current GBT rms (diminishing returns)

25 NH Mz NH2
’ @ pyrrole S vinylcy acetyle )\Z-aminuprop\omlrile glyceraldehyde
# [,

3.0

T fnJy."béa;m

| M ] ‘.l .‘J Jl..lJ " . J.H‘ e Ly |

24500 25000 25500 26000 26500 27000 27500
Frequency (MHz)




Astrochemistry Research —VWhere are we now!
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Total number of molecular detections per year
since 1968. Reproduced from McGuire et al.
2022 —and its still growing

From the simplest, to the most complex,
the modern field of radio astrochemistry
is uncovering a molecular complexity
previously unheard of just 50 years ago.

American Astronomical Society Meeting —

Happy Birthday to:

| DON'T RLWAYS

* Formaldehyde — 53 y/o

e Carbon Monoxide/”X-ogen”
* Methanol —
e Methyl Amine/Dimethyl ether/Remiji

Ammonia — 54 y/o

SAY: HﬂPFYgBIRTHI]ﬂY

52 ylo —
BUT WHEN] 00,15

* Acetone —35y/o
e Acetic Acid/Ethylene Oxide — 2 j
* Glycolaldehyde — 22 y/o N

ONLY TOIEGENDS

\@ﬁ HAPPY BIRTHDAY

e Ethylene Glycol —20 y/o
* Acetamide/C(H — 16 y/o
e C,/Cypo—12ylo

e Cyx'-9vlo

e Benzonitrile — 4 y/o
* Urea— 3 y/o (or 8?)

* |/2 — cyanonaphthalene — | y/o £

e 40 molecules turn | this yeai
molecule detection a week fi
* To get to 40 detected molec

40 years (1937-1975)

14 June, 2022




Goals

iT’S AN
Have a little fun, reminisce and pay J.
respect to Lew Snyder

THING, YOU
Even though astrochemistry has WOULDN'T
been around for more than 50 UNDERSTAND

years, we still don’t have a very
good understanding of interstellar
chemical processes

Using a combination of chemical
mapping and high resolution
spectroscopy, we can start
answering the question of how
large molecules form in space

formed that

ZOOM TO PLANET
The prebiotic moleculas are delivered to planets.
by passing comets, interplanetary dusl particles,
and meteorites.

American Astronomical Societ
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Let’s start at the beginning...detection of Formaldehyde

A detection in 1969 forever changed the way that
astronomers and chemists viewed the universe

MICROWAVE DETECTION OF INTERSTELLAR FORMALDEHYDE

Lewis E. Snyder and David Buhl
National Radio Astronomy Observatory,* Green Bank, West Virginia 22901

and

B. Zuckerman
University of Maryland, College Park, Maryland 20742

and

Patrick Palmer
University of Chicago, Chicago, Illinois 60680
(Received 17 March 1969)

Interstellar formaldehyde (H,CO) has been detected in absorption against numerous
galactic and extragalactic radio sources by means of the 1;,-1,, ground-state rotational
transition at 4830 MHz. The absorbing regions often correspond in velocity with 18-cm
OH features. H,CO is the first organic polyatomic molecule ever detected in the inter-
stellar medium and its widespread distribution indicates that processes of interstellar
chemical evolution may be much more complex than previously assumed.

American Astronomical Society Meeting — 14 June, 2022




Let’s start at the beginning...detection of Formaldehyde

At that time, only CH, CH™, and
CN were identified in optical
spectra by Swings and Rosenfeld
(1937), McKellar (1940), and

Douglas and Herzberg (1941),
respectively.
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NOTE ON THE INTERPRETATION OF UNIDENTIFIED
INTERSTELLAR LINES

ABSTRACT
Spectroscopic objections to recent assignments of Merrill's unidentified stationary
linea to molecular absorption hands are outlined,
Since the suggestion of the possible molecular origin® of Merrill’s
four interstellar lines,* attempts to correlate them with absorption
bands of known molecules have been made.®* The resulting identi-

fications are, unfortunately, open to purely spectroscopic criticism,
and indeed it seems highly improbable that these lines can be inter-
preted as molecular bands.

Many years later, OH was found in

absorption against Cas A by Weinreb et al.
(1963).

Thus for a 30 year span, only diatomic
molecules were found in space: CH, CH", CN,
and OH.




Let’s start at the beginning...detection of Formaldehyde

Lew Snyder arrived at NRAQO in 1967 for
what was to be a 2 year assighment to
search for molecules in space... Along with
Dave Buhl, an electrical engineer and fellow
molecule hunter, they discussed the
possibility of finding H,O in space.

These efforts were presented at the AAS
meeting in Austin in Nov. 1968 by Snyder.
But before the presentation could start,
Charles Townes announced that his group
had discovered ammonia (NHs,) in space
with the Hat Creek Millimeter Wave
Antenna a few weeks earlier.
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FIG. 2. Observed NH; spectra and continuum from
the galactic center. (a) J=1,K=1 inversion of NH; with
the expected hyperfine splitting superimposed, (b) base-
line from empty sky, and (¢) J=2,K=2 inversion line
of NH;. The continuum temperature should be scaled
down by a factor of 2 because superheterodyne detec-
tion accepts both sidebands of continuum radiation.
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Let’s start at the beginning...detection of Formaldehyde

The detection of NH; was soon followed by the detection of water —
which turned out to be a source of maser emission.

It was time to get serious about searching for larger molecules in

astronomical environments and NRAO facilities were well “positioned” to
lead these searches.

Rick Suenram “positioning” the

| 40-ft telescope in Green Bank,
WV

American Astronomical Society Meeting — 14 June, 2022 Q @ U]
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Let’s start at the beginning...detection of Formaldehyde

Prompted by the Assistant to the
Director of NRAO, W.E. (Bill) Howard
lll, Howard suggested that they write a
proposal for all the molecules they
wanted to find and submit them to D.S.
Heeschen, the NRAO director at the
time.

However... NRAO management was
not very “enthusiastic” about scheduling
months of observations on the 140-ft

and nearly a year of ObserVing on the William E. Howard, Ill (1932 - 2016) at
the 30% anniversary of the 140-ft
36-ft. telescope.

*
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Let’s start at the beginning...detection of Formaldehyde

As instructed, Snyder and Buhl submitted their proposal
which triggered an explosion by then director David
Heeschen.

Paraphrasing the proposal review, it said something to
the effect of:

“how irresponsibly the Pls had requested months of

| 40-ft time for source searches and almost a year of
36-ft time. What were we trying to do?”

In response... Buhl said that “we were trying to interest people in molecules in
space.” |

Heeschen responded, ‘‘you have failed to interest
me!”’

Snyder replied with ...something more colorful.

American Astronomical Society Meeting — 14 June, 2022



Let’s start at the beginning...detection of Formaldehyde

With the pressure mounting with the new
detections taking place in Hat Creek,
Heeschen instructed Howard to allocate
time for “molecule searches” amongst
other observing programs... which caught
the team by surprise.

Howard negotiated a deal with B. Zuckerman
and P. Palmer, who had 140-ft time mixed with
the molecule searches. In return for using
their OH sources and Berkeley Doppler shift
program, Snyder and Buhl let them share in the
search for H,CO.

And in the spring of 1969, they found the
H,CO 4830-MHz line in absorption with the
| 40-ft of the NRAO — the rest is history!

American Astronomical Socitty w
O




Let’s start at the beginning...detection of Formaldehyde
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FIG. 1. Formaldehyde absorption against the galac-
tic center (Sgr A). The ordinate is antenna tempera- Formaldehyde absorption taken towards SgrB2(N-LMH) with
ture and the abscissa is radial velocity with respect the GBT as part of the GBT PRIMOS Large molecule survey.
to the local standard of rest. This spectrum closely Velocities are relative to the 64 km/s systemic source velocity.

resembles the OH absorption specirum in the same di-
rection. The effective resolution is ~1 km/sec.

This line was detected in absorption against the continuum sources M17,W3,W3(OH),
W49, NGC2024, Dr21,W43,W44,W5 1, SgrA, SgrB2, NGCé6334, CasA, and 3CI23.
(Zuckerman, B., Buhl, D., Palmer, P, and Snyder, L.E.,Ap,Vol. 160, May 1970.)

During these early observations, H,C'30O, an isomer was discovered (Zuckerman, B.,
Palmer P, Snyder, L.E., and Buhl, D. 1969,Ap.). (Letters), 157, L167.)




From those humble beginnings, a revolution started...

e The detection of CO in 1970 started a revolution that would change the way
astronomers would study the universe:

40 40
THE ASTROPHYSICAL JOURNAL, 161:L43-L44, July 1970 * +
@ 1970. The University of Chicago. All rights reserved. Printed in U.S.A
30 + o +
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CARBON MONOXIDE IN THE ORION NEBULA ] = +
£ 20| & aof -
R. W. Wison, K. B. JEFFERTS, AND A. A. PENzZIAS = E .
Bell Telephone Laboratories, Inc., Holmdel, New Jersey, and H . z +
Crawford Hill Laboratory, Murray Hill, New Jersey £ N g + ++‘
Received 1970 June 5 < .o
ABSTRACT 1of . ok .
We have found intense 2.6-mm line radiation from nine galactic sources which we attribute to carbon *
monoxide, + . 4t
+ + ey,
+ L ad P -
LT e, & +
olteet”, I Treas o 1 L L s L s
. 10 0 10 -2m B o [ Ea
This work was done with a specially constructed line receiver mounted on the NRAO FREGUENCY DISPLACEMENT {Mtiz) DISPLACEMENT IN RA.
36’ paraboloid. Schottky barrier diodes developed by C. A. Burrus of Bell Laboratories Pot ‘ Fio. 2 .
were used in Sharpless wafer units both in the signal mixer and in 2 harmonic mixer used renils. Lo Spectrum ;’cfuf,f.’;;"'{f‘f'f‘5°nzg’%£h§18§‘°“ Nebula made with th NRAO forty-channcl line |
to control the frequency of the local oscillator klystron. Calibration noise was provided Fio. 2—Distribution in right ascension of the peak antenna temperature of CO radiation at a declina-
tion of —5°24'21".

As a consequence, astronomers frequently employ CO
2% emission to measure molecular gas masses. The standard
Lo agil methodology posits a simple relationship between the ob-
'5 > served CO intensity and the column density of molecular
gas, such that

N(Hz) = Xco W(**C'*0J =1 — 0), (1)

- Y
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The hunt for more complex molecules
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The Search for Larger Molecules - Interstellar Glycine

 Since the spectrum was first characterized in the late 1978s by
Suenram and Lovas the hunt was on...

THE ASTROPHYSICAL JOURNAL 241:1001-1006, 1980 November 1
5 1980, The American Astronomical Sochety. All cights reserved. Printed in LLS.A.

A SEARCH FOR THE LOWEST-ENERGY CONFORMER
OF INTERSTELLAR GLYCINE
J. M. HoLLis
Laboratory for Astronomy and Solar Physics NASA Goddard
L. E. SNYDER
University of Illinois, Urbana
AND
R. D. SUENRAM AND F. J. Lovas

National Bureau of Standards
Recelved 1980 February 25; accepted 1980 April 29

THE ASTROPHYSICAL JOURNAL, 268:123-128 1983 May 1

a lvcl NE i 1983, The American Astronomical Society. All rights reserved. Printed in U.3.A
N

LD
'/;v\. y AN EXTENSIVE GALACTIC SEARCH FOR CONFORMER 11 GLYCINE
y\ L. E. SNYDER

BULK : University of Illinois, Urbana

SUPPLEMENTS con J. M. HoLLis

GLEAN & PURE BULK SUPPLEMENTS Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center

R. D. SUENRAM AND F. J. Lovas
Mational Bureau of Standards

AND

L. W. BrRowN anD D. BUuHL
Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center
Received 1982 September 20, accepted 1982 October 26




The Search for Larger Molecules - Interstellar Glycine

—

* However... nothing was found

— Well ... not quite. During these initial searches, there were a lot of serendipitous
detections of molecules like formic acid, methyl formate, dimethyl ether and the
large cyanides.

TaHK) | | ]
015 ORION A
010 _
0.05 _
|
0.00 — —'l
-0.05— [ 1 [ |
| al Ib IK=5 ‘{3
L | | |
108.8 58.8 8 412 912

RADIAL VELOCITY (km/sec)

Fic. 5.-—The emission spectra for (a) the 8,57, E and [bé) A resolved transitions of methy] formate in Orion are shown. Fiducial marks for glycine
and acetic acid positions are delineated the same as Fig, 2. Ordinate, antenna temperature T,*, corrected for atmospheric and antenna losses;
abscissa, radial velocity with respect to the LSR calculated for an upper sideband rest frequency of %0,233.7% MHz. The data were taken with 250 kHz
width and spacing, and a three-point boxcar smoothing function has been applied.
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Interstellar Glycine Searches...

* As the search intensifies into oo e e
the late 80s and 90s, the g ]

spectroscopy gets better and
better in the lab and searches
are conducted on the NRAO

o b 33
I2-m and IRAM 30-m 014.5]?50; 143800 14311—35:

telescopes...

Fig. 1b. Same as la, around 143 GHz, the theoretical noise level is
SmK.

e Results are always the same...
Image Frequency (MHz)
lot of blank spectra or worse up_pme e mem | s
yet, lots of blended lines... ]

23452-GI
223474=Gll
223490-Gl

223443-Gl
223483-GIl

0.2

e And, blank spectra and/or
blended(contaminated)

=02 -

transitions can lead to 1 g 280118 3
o > wn,  |F >3 £ 5 3 o 3 X
erroneous detections 223450 223500 223550 223600

Rest Frequency (MHz)

Fig. 1c. Same as 1a,
tmkK.

around 223 GHz, the theoretical noise level is
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Dihydroxyacetone Urea

THE ASTROPHYSICAL JOURNAL, 643:L29-132, 2006 May 20

\ 0. A&A 628, A10 (2019)
2006. The Amenican Astronomical Society. All rights reserved. Printed n US A
hitps:/idoiorg/ 10.1051/0004-6361/201935428 tronomy
© A. Belloche et al. 2019 Astrophysics

INVESTIGATING THE LIMITS OF CHEMICAL COMPLEXITY IN SAGITTARIUS B2(N): A RIGOROUS ATTEMPT
TO CONFIRM 1,3-DIHYDROXYACETONE

A J. Arpont, D. T. HALFEN, AND L. M. Ziukys Re-exploring Molecular Complexity with ALMA (ReMoCA):
Departments of Chemistry and Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; aapponi@as.arizona.edu . .
interstellar detection of urea
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Additional Large Molecule Searches...

It was believed that the
reason we were not
detecting glycine (or other
amino acids) was that their

emission was being beam
diluted.

If we were able to use higher
resolution and look into the
hot cores, these lines would
start to come out from the
weeds...

And it seemed as if Lew’s
argument was correct...

Detection of large interstellar molecules with radio interferometers

Show affiliations

Snyder, Lewis E.

More than 112 interstellar molecular species have been reported to date. Small interstellar molecules and large
interstellar molecules with a low degree of saturation (low hydrogen count) can be formed in quiescent gas clouds or in
shock fronts by gas-phase chemical reactions, such as ion- molecule reactions and neutral-neutral reactions. Because
these gas-phase species are found in spatially extended clouds, they have dominated most of the past single-element
telescope studies of extended interstellar molecular clouds. Now, with the advent of radio interferometric arrays that
operate at millimeter wavelengths with high spatial resolution, the study of a rich dust-phase chemistry around small hot
molecular cloud cores has become possible. These small cloud cores, less than 0.1 parsec in diameter, form the type of
dusty environment that contains presolar nebulae contracting under gravity before the onset of fusion; they contain large,
complex, interstellar molecules with a high degree of saturation that are also of some biological interest: acetone, ethyl
cyanide, ethanol, acetic acid, and probably the smallest amino acid, glycine. These molecules cannot be formed easily
by gas-phase reactions alone; consequently, theories of solid state chemical reactions on grain surface ice mantles are
often invoked to form these large molecules and evaporation is proposed as the mechanism that drives them into the gas
phase. Hence, high resolution milimeter-wavelength arrays can spectroscopically sample the composition of evaporated
presolar material-the material that eventually may form the basis for a type of prebiotic organic chemistry similar to that
found on the early Earth.

Publication: Proc. SPIE Vol 3111, p. 296-304, Instruments, Methods, and Missions for the Investigation of
Extraterrestrial Microorganisms, Richard B. Hoover, Ed.

Pub Date: July 1997

DOL: 1011712278783 &

Bibcode: 1997SPIE.3111..296S
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Interstellar Acetic Acid Searches...

e Acetic acid was the first molecule ever to be detected with an array without having
first been detected with a single dish telescope. And | would argue (to this day)
there has yet to be a detection of acetic acid with a single dish telescope!

DETECTION AND CONFIRMATION OF INTERSTELLAR ACETIC ACID LT T TN “T -
Davip M. MEHRINGER,! LEwIs E. SNYDER, AND YANTI M1AO i | i l
Department of Astronomy, University of [llinois, 1002 W. Green Street, Urbana, IL 61801; i i g |
dmehring@socrates.caltech.edu, snyder@astro.uiuc.edu, yanti@astro.uiuc.edu H ) g

AND
Frank J. Lovas %’

Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 ; f i
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At the same time...

e Shortly after the detection, comparative mapping campaigns started to look
at the relative distributions of acetic acid, methyl formate and formic acid.
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Mapping molecular emission
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e Even before ALMA came online, CARMA,
PdB and the eVLA were very active in
mapping the distribution of large molecules
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Mapping molecular emission

Orion was believed to contain
distinct “N-rich” and “O-rich”
cores. Yet when the detection
and mapping of large
molecules at high sensitivity
started, the distinction was not
as apparent and also, molecules
like acetone — didn’t follow the
convention at all.

Acetone in Orion BN/KL*:-**

High-resolution maps of a special oxygen-bearing molecule
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Here is another really cool way to visualize the acetone distribution
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PHYSICAL, CHEMISTRY
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Spatial Distributions and Interstellar Reaction Processes

Justin L. Neill,” Amanda L. Steber," Matt T.Muckle,” Daniel P. Zaleski," Valerio Lattanzi,*’g Silvia Spezzano,*’g
Michael C. McCarthyf’g Anthony J. Remijan,' Douglas N. Friedel"~ Susanna L. Widicus Weaver,” and
Brooks H. Pate*"
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~ The addition of spatial distributions to interstellar reaction 2

- s  networks is a field of study in its infancy. The first report of the —

€ predicted spatial distribution of molecules for hot core chemistry “ 3

L s < indicates that the gas-phase distributions of methyl formate, _ 1

% formic acid, dimethyl ether, and methanol are highly correlated
- 1 ¢ with a peak abundance centered on the hot core pnsition.lé ’ |
N ~ NS
50" - = 50" \\ﬂx 50" < .
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-5%23'00" [ —gr T ) ron T -
05h35|m.|69_01 15!_0 l 1 4'5_0 J o The hypothesis that we consider here is that the spatial distribu-
J2000 Right Ascension tions of methyl formate and formic acid suggest that there is a

gas-phase reaction process that consumes formic acid to produce
methyl formate. This idea is suggested by the apparent reduction
in formic acid density at the position of peak methyl formate
production (MF1). We also note that this same anticorrelation of
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ALMA was here! And this is what we got...
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Mapping molecular emission

* Once ALMA starting mapping large molecules, it was clear that we were given a
wealth of information about the distribution of molecules that were never before

seen.

Increased complexity in interstellar chemistry:
detection and chemical modeling of ethyl formate
and n-propyl cyanide in Sagittarius B2(N)*-**

A. Belloche!, R. T. Garrod®!, H. S. P. Miiller>!, K. M. Menten', C. Comito', and P. Schilke'
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Mapping molecular emission
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Transition Maps vs. Chemical Maps
Xue et al. 2019,Ap), 871, 112
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* When mapping the detected transitions, care has to be taken to
differentiate between physical and chemical difference and
transitions that are “contaminated”...
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Transition Maps vs. Chemical Maps
Xue et al. 2019,Ap), 871, 112
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Transition Maps vs. Chemical Maps
Xue et al.2019,Ap), 871, 112
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A “chemical map” will allow us to truly get a chemical picture of the
environment and will help to disentangle physics from chemistry.
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Mapping molecular emission - Conclusions

* We are beginning to really see the utility of using chemical
maps to determine something about the formation chemistry

 Typically, the spatial extent and morphology of the distribution
of molecules and NOT taken into consideration — they are all
reactive and not predictive (more on that later)

* Yet the power of interferometric arrays are clearly
demonstrated to determine possible chemical formation
pathways.

*

b |
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Outline
Let’s start at the beginning...detection of Formaldehyde

The hunt for more complex molecules

e Glycine
e Dihydroxyacetone
e Urea
Interstellar mapping campaigns
e Acetic acid

e Acetone
e Formic acid/methyl formate

e C,H,O, isomers
What are the limits to molecular complexity?

Current GBT rms (diminishing returns)

3.0 !

NH

25 NH M
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Molecule Discoveries Stall* using ALMA

e ALMA did not give the watershed of new molecule detections
that were anticipated.

e This is/was largely due to the tremendous amount of line
confusion and the fact that the rotational energy of large
molecules was spread over a wide range of frequencies.

* Very wisely, looking at the proposal for the Green Bank
Telescope...

The strong spectral features of larger molecules will be in the centimeter range,
whereas those of smaller molecules will be in the millimeter or even the submil-
limeter range. Thus, the centimeter spectral region, in addition to playing an
important role in the astrophysics of molecular clouds, is now being recognized
as highly important in clarifying the astrochemistry as well, a role previously
emphasized more for the millimeter and submillimeter spectral regions.
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Where we are today?

New molecule detections and a better understanding of the molecular makeup of

the Galaxy continues to grow because of low frequency observations, new,

The shift has moved to
an old (but new again)
source, TMC-1, with the
detection of the first
true aromatic species

in the ISM.

The detection of
benzonitrile in 2018
started the first of
many new aromatic

species detected
towards TMC-|
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And a GBT Large Program

GBT Observations of TMC-|: Hunting Aromatic Molecules
(GOTHAM) collaboration has used the tried and true technique
of averaging and matched filtering to detect even more complex
species, such as | and 2-cyanonaphthalene

ASTROCHEMISTRY

Detection of two interstellar polycyclic aromatic
hydrocarbons via spectral matched filtering

Brett A. McGuire'>**, Ryan A. Loomis®}, Andrew M. Burkhardt®t, Kin Long Kelvin Lee™®,
Christopher N. Shingledecker®>5, Steven B. Charnley’, lisa R. Cooke®, Martin A. Cordiner™,
Eric Herbst'®", Sergei Kalenskii'?, Mark A. Siebert", Eric R. Willis'®, Ci Xue'®,

Anthony J. Remijan?, Michael C. McCarthy®
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There and back again...
The curious case of HC,|N

The first initial claims for this molecule were in
1982 towards IRC+10216 and 1985 towards TMC-1.

The first multi-transition detection was by Bell et al. 1997

IIIII-I 1 I I T T T I I T T T II

. l | It should be noted that in some cases the observing fre-
quency used differed slightly from the rest frequency (Table 1).
For HGsN, the observing frequency used was 13,313.338 MHz.
More importantly, for the HC)N J = 22 — 21 and 23 — 22
lines, the observing frequencies were 12,782.766 and
13,363.790 MHz, respectively, and the differences between
these and the rest frequencies in Table 1 were taken into

HCpNUJ=39-28)

61— - account in determining velocities. For the J = 38 — 37 line of
- HC;N, the value obtained from the laboratory constants
4 (12,848.731 MHz) was used both as an observing frequency

% - and in determining the velocity listed in Table 1.
= Three U lines are apparently present in the deep HC;N
[:C - ! spectra (Fig, 1), For the reason mentioned earlier, we are
0 ; unable to completely rule out the possibility that these are
I spurious features introduced by the correlator. If this is the

-2
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There and back again...
The curious case of HC,|N

It wasn’t for a lack of trying though!

MNRAS 463, 41754183 (2016) doi:10.1093/mnras/stw2302
Advance Access publication 2016 September 12

Tue AstropHYSICAL JoURNAL, 850:187 (7pp), 2017 December 1 haps://doi.org/10.3847/1538-4357/2a970c
Non detection Of HC © 2017. The American Astronomical Society. All rights reserved.
of large carbon-chai . _ . . . | Crossark

Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of
Ryan A. Loomis,'* Chri HC-;0, Nondetection of HC;;N, and a Search for New Organic Molecules
Brett A. McGuire, 4‘51' N M. A. Cordiner' @, 8. B. Chdmlcy Z. Kisiel’ . B. A. McGuire" @, and Y.-J. Kuan >0
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Figure 3. GBT K-band spectra surrounding two transitions of HCjN.
Predicted spectra based on the column density reported by Bell et al. (1997) are
overaid in blue.
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There and back again...

Until... finally!

An investigation of spectral line stacking
techniques and application to the detection
of HC;N

The curious case of HC,|N
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to fill the GBT beam at the frequencies probed by GOTHAM ™.
- 26,035.3 MHz 26,373.4 MHz 26,7115 MHz 27,049.6 MHz 27,387.7 MHz 27,725.8 MHz These observations were all taken at relatively coarse spatial reso-
z lution, however, and the detailed distribution of these species is
E = unknown, as is the distribution of larger cyanopolyynes such as
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spectral and spatial resolution do not exist to date, making it dif-
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Fig. 6 | Individual line observations of HC,N in the GOTHAM data. The spectra (black) are displayed in velocity space relative to 5.8 km s, and using the
rest frequencies given in the top right of each panel. The best-fit model to the data, including all velocity components, is overlaid in green. Simulated spectra
of the individual velecity components are shown in blue (5.63kms™"), yellow (5.79kms™), red (5.91kms™") and violet (6.03kms™"),
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The “old” tried and true way - still effective®
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CrossMark
Precursors of the RNA World in Space: Detection of (Z)-1,2-ethenediol in the Interstellar
Medium, a Key Intermediate in Sugar Formation
LETTER TO THE EDITOR )
Victor M. iji]la"z , Laura Colzi'?©, lzaskun Jiménez-Serra’ , Jesis Martin-Pintado’ , Andrés Megi: s' 0,
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Pure hydrocarbon cycles in TMC-1: Discovery of ethynyl . - pe . -
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Figure 1. Selected unblended or slightly blended transitions of 1,2-ethenediol detected toward the G 10.693 - 0.027 molecular cloud. Note that each panel contains
twor | 2-ethenediol transitions close in frequency that are not resolved (see Table 1), the individual contributions of which are shown with the yellow and salmon
curves. The hest LTE fit derived with MADCUBA for the 1,2-cthenediol emission is shown with a red curve. The blue curve represents the total emission considering
I all the species identified toward this molecular cloud.
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Overall impact of facilities on the detection of new molecules
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1967 - 1984 1984 - 2021 2004 - 2021
" | | | l |
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the facilities over selected time periods are highlighted. accounted for 58% of all detections made during its operational lifetime.
Facilities no longer in operation are colored red, and current facilities are in
blue.
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The Aldehyde Family
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The Water Family?
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Adding Spatial Extent to Chemical Models?

Chemical maps are “expensive’” and difficult to interpret...
*  “What type of data do you want/need?”
Do morphological differences actually trace chemistry
or physics!?
e Or worse...just abundance?
 Mapping isomeric “families” may help to constrain chemical
formation models (maybe)
What does the “non-detection” of some isomers tell us!?
Perhaps just the spectra is enough...
 Moving beyond adding “epicycles” to chemical models
Do we/should we fundamentally change how we
approach chemical modeling of molecules in
astronomical environments!?

% b
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Adding Spatial Extent to Chemical Models?

. o N “One significant advantage of simplicity is the
) clear focus it gives you. This level of clarity
N makes it easier for you to produce the results
you’re after.”
geocentric heliocentric
system system
GOAL/CHALLENGE:

Determine a global formation pathway for a chemical family that is
consistent with both the spectroscopic detections and morphological
diversity in a given astronomical environment.

How do we get there!
| have no idea...
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Astrochemistry Research — Continuing a Legacy...

0] | | " | From the simplest, to the most complex,
the modern field of radio astrochemistry
is uncovering a molecular complexity
previously unheard of just 50 years ago.

Since 1968: 3.9 detections/year
Since 2005: 6.0 detections/year
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Total number of molecular detections per year
since 1968. Reproduced from McGuire et al.
2022 — and still growing!

LES:“Formaldehyde was the first polyatomic organic molecule found in space. This
discovery revealed the vast amount of gas and dust that is found between the stars and

9

marked the start of an exciting branch of chemistry broadly known as “astrochemistry”.
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The Green Bank Telescope provides the sensitivity and resolution
needed to continue the search for molecule material in the ISM.

Detections came fast and furious starting around 2004...

Green Bank Telescope Observations of New

Interstellar Aldehydes: Prepenal and Propanal
(Hollis et al. 2004, ApJ, 610, L21)
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Methyltriacetylene (CH,C H) toward TMC-I:The

Largest Detected Symmetric Top
(Remijan et al. 2006, Ap]), 643, L37)

In this work, we identified interstellar methyltriacetylene (CH,CH) using the
GBT toward the dark Taurus Molecular Cloud (TMC-1). oo —

T T
CH,CH =1 | E=0 1B877.805 MHz
12 K-11K | |

A 4 b ]
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PRebiotic Interstellar MOlecular Survey

e One of the earliest “Large” programs on the GBT

e Target: Sgr B2(N-LMH)

e Coverage: 40.4 GHz of Bandwidth from 300 MHz - 50 GHz
* Noise level of ~2 mK

e Publicly available with no proprietary period
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(Some) New Molecule Detections
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Student Team Discovers New Interstellar

Molecule During Summer Program
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GBT Observations reveal the first signal from a
chiral molecule

&

glyceraldehyde deuterated ethanol
| 3 \ Joint GBT/Parkes
, Detection
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GBT Observations reveal the first signal from a
chiral molecule
Green Bank Telescope
Nt~ 1x1083 cm>
T ~5K

Z
i ™
-8 c
-3 2. -2
_ o 11 " €02 [
- (18

i

63 74t ISMS Conference, 2019 June — Champaign, IL @ U]
NRAO



One of the most surprising and unanticipated
discoveries was the first detection of interstellar
anions toward the dark cloud TMC-1

CeH

Laboratory and Astronomical
Identification of the Negative Molecular
lon C,H"
2006Ap)...652L.141 dass

Surprising because it was believed that the
smaller anions (e.g. C,H") would be
detected before the larger anions.

Turns out the larger molecules had a
larger electron affinity which would

preferentially favor larger molecules |
forming anions. ' I!IIHJ

Raolative Intensity
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Soon after the discovery of
CH-...
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For the better part of 4 years,
the search for anions with the
GBT continued at a furious
pace and expanded to more
anions and more sources
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Detection of large molecules — an aside.

e With all the progress made in mapping the distribution of large molecules with
ALMA and the arrays that have come before it, ALMA has not provided the
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