

The IRAM 30m Telescope on Pico Veleta

Carsten Kramer

IRAM 30m telescope

- Properties
- Thermal control & de-icing
- Aperture efficiencies, gain-elevation curves
- Planned upgrade of the telescope
- Frontends & history
- Science Highlights

ain-elevation curves

The IRAM 30m telescope

- Instituto Radioastronomia Milimetrica, IRAM, a French-German-Spanish collaboration.
- Two observatories:
 - + Northern Exended Millimeter Array, NOEMA at Plateau de Bure / France + the 30m telescope at the Pico Veleta / Sierra Nevada / Spain.
 - 2850m altitude, 37° latitude
 - Seasonal variation of the amount of precipitable water vapour:
 - Winter months October March: 50% < 4.2mm, 25% < 3mm
 - Summer months April September: 50% < 6mm, 25% < 4.2mm
 - In operation since 1985, day and night, 365 days per year.
 - Surface accuracy ~ 60μ m rms. No active surface.
 - Thermally controlled back structure and yoke. Panel de-icing system. Wobbling subreflector ±2'
 - Observing up to 18-20 m/s wind speed
 - Sun avoidance radius $= 1^{\circ}$
 - More than four generations of new instrumentation.
 - Planned upgrade of the telescope in coming years.

Todays and Future role of the IRAM 30m telescope

- Large bandwidth multi band spectroscopy in range 70 to 370 GHz
- Large high sensitivity maps in line and continuum with resolutions 7" to 35".
 - Mapping-out structure of gas and dust in clouds of the Milky Way and in nearby galaxies
 Detailed chemical studies of individual sources and
 - Detailed chemical studies of individure regions (3D mapping)
 - Low Surface Brightness Science: Sunyaev
 Zel'dovich Effect, diffuse molecular gas
- Essential short structures tool for NOEMA and Polarimetry of Galactic Structures
- Essential high sensitivity mm VLI

Thermal control at the 30m

Thermal drifts can affect pointing, focus, reflector surface.

Iram

Institut de Radioastronomi Millimétrique

- Passive control: paint, insulation, closed back structure
- Active control: ventilated and climatized backup structure. Since 2000, ventilation and heating of yoke.
- Temperature uniformity between the yoke, the backup structure, and the quadripod less than ±1°C
- Temperature uniformity of the backup structure rms(T_{BUS}) of less than 0.5°C.
- The present system (after 2000) has
 150 temperature sensors in the
 backup structure and in the yoke.

Pedestal-yoke supported reflector. 1: yoke, 2: backup structure, 3: central tower on azimuth bearing, 4: quadripod. Solid square: reference temperature of the yoke to which the temperature of the backup structure and quadripod are actively controlled. Baars et al. (1988)

De-icing

- Heating is installed at panel rear side, the reflector rear cladding, yoke surfaces, quadripod, and subreflector, to avoid icing when it is raining at freezing temperatures.
- This keeps the panel front surfaces free of ice, but some ice and icicles may still form at cold edges.
- After the storm and switching-off de-icing the telescope needs about 6 hours to recover a thermally stable state.

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

Planned upgrade of the 30m telescope: Primary mirror

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

The pre-study by industry done in 2018 indicates that the surface rms and the gain-elevation curve can be improved with two actions:

1/ Re-aligning all 420 panels on their 210 subframes. After dis-mouting the frames and panels, the panel plaint will also be replaced.

2/ installing about 50-60 actuators, to use lookuptables, to flatten the gain-elevation curve.

Why upgrading the 30m?

- Improved surface accuracy will
 - improve the beam efficiencies, <u>sensitivities</u>, calibration accuracy, and also
 - <u>imaging quality</u> in particular, beyond 200 GHz, and for low declination sources.
- Its first surface paint layer will be replaced, leading to improved thermal behaviour and improved ability to observe under day-time conditions, and near the sun.
- <u>New servo and control system will improve</u>
 - <u>Slewing and tracking speeds</u> to:
 - allow for more efficient observations of Galactic GMCs, and
 - to better overcome atmospheric fluctuations for NIKA2 observations,
 - and to raise the <u>elevation limit</u> beyond 83°.
 - Reaction to <u>wind</u> will be improved, improving tracking performance, and losses of observing time due to high wind.
 - Implementation of <u>new scanning patterns</u> will be easier.

Instrumentation: Status and Future Evolution

EMIR for 3mm, 2mm, 1mm, 0.8mm with high resolution backends for up to 32 GHz total bandwidth

-HERA, an heterodyne 3x3 dual-polarisation

observations at 1 and 2mm with 6' Field-of-View and polarization capability at 1mm.

The future 5x5 pixel 3mm and 7x7 pixel **1.3mm heterodyne arrays**

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

imultaneou

Lessons learned: EMIR

Go in small steps for hardware, but also for software ! Teamwork !

Contents

- 1. EMIR Users Guide
 - 1. <u>News (last update: 25-Apr-2017, CM)</u>
 - 2. Upgrades
 - 1. Sep-2016: New dichroic for E0/E2 dual-band operation
 - 2. Dec-2015: New 2SB mixers for E0 and E1
 - 3. Sep-2013: 2SB mixers for E1
 - 4. Nov-2011: 2SB mixers for E2 and E3
 - 5. Jul-2011: 32GHz IF-system, FTS backends

– GILDAS software package:

- -observers interface: PAKO specific to all observations with the 30m
- -spectral line calibration package: MIRA / MRTCAL specific to the 30m

-spectral line data reduction package: CLASS — used at a variety of observatories

Lessons learned: NIKA2

NIKA Pathfinder

- 10/2009: 1st light with 69 KIDs at 150 GHz
- 10/2010: Technical run with dual-band camera
- 2011-2014: 7 technical campaigns
- 2014-2015: NIKA opened to the community
- NIKA2 commissioning
 - 10/2015: Installation and first light
 - 1/2016: complete readout electronics
 - 1/2016 4/2017: 10 commissioning campaigns
 - 9/2017: IRAM end-of-commissioning review.
 Adam et al. 2018: The NIKA2 camera for the 30m telescope
- Since 10/2017, NIKA2 is available to the community Ruppin et al. 2018: First SZ mapping with NIKA2
- 2nd Phase of Commissioning:
 - 11/2017 11/2018: 1mm polarimetry
 - In-situ measurements of bandpasses using Martin-Puplett Interferometer
 - 8/2018: Installation of new dichroic built in Cardiff
 - 9/2018: Commissioning of new data acquisition software
 - Ongoing: Data processing software: quick view and offline data reduction

IRC+10216

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

Mass loss of AGB stars via stellar ejecta enrich the ISM and largely control the chemical evolution of galaxies

Iram

nstitut de Radioastronomi

Millimétrique

- Here, CO emission of the shells of carbon-rich AGB star IRC+10216 at 120pc distance
- Envelope is nearly spherical, expanding at 14.5 km/s.
- The resolution of 11" corresponds to an expansion time of 500 yr. The map shows the mass loss history of the last 8000 yr. The typical shell separation is 800-1000 yr.
- A companion star with a period of 800 yr would explain all key features.
- Cernicharo et al. 2015, A&A, 575, A91
- IRC+10216 exhibits a very rich chemistry. Nearly 50% of the known interstellar species have been found here.

Detection of methyl silane CH₃SiH₃ in IRC+10216

- The detection of organo-silicon molecule CH₃SiH₃ may help in understanding of silicon-carbon chemistries in the inner envelope of AGB stars, and the formation of SiC grains from gas-phase Si_nC_m.
- Ten rotational transitions detected with the IRAM 30m telescope between 80 and 350 GHz: J=4-3 to J=16-15
- Blue: Observed spectrum
 - Green: Modelled CH₃SiH₃ spectrum Red arrows indicate K-ladder.
- Cernicharo, Agundez et al. 2017 (A&A, 606, 5)

Periodic time variability of C_4H , C_2H , CNin IRC+10216

Period = 635 days

(Pardo et al. 2018, A&A, 615, 4)

M 30m telescope

NIKA2 maps of a 2°x1° region of the Galactic plane

Sites of high and low mass star formation, and infrared dark clouds towards the Galactic plane at 24° longitude. Thermal dust emission, but also radio free-free and synchrotron emission. Aiming to study dust emissivity variations and the evolution of cold dust properties.

NIKA2 continuum camera at the 30m telescope: 3000 pixels at 2mm and 1mm, using superconducting KID detectors at 150mK. Fast scanning 60"-70"/s and fast sampling with 24 Hz to overcome atmospheric fluctuations and to detect the extended emission.

Ancillary data available from Planck, Herschel, APEX. A large 30m program by Peretto, Rigby et al. 2018, EWASS.

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

- combined with electron density profile from XMM-Newton
- Ruppin et al. 2018, A&A, accepted

IAU Large single dish projects & lessons learned • Vienna • 27 August 2018

100

Frequency (GHz)

1000

Pulsar with strong B-field, >10¹³ G, discovered 2013 at only 2.4as distance to Sgr A* in X-rays and at radio wavelengths. Period = 3.76s.

Follow-up observations with the 30m telescope reveal strong, variable, polarised emission at 3.45 to 1mm wavelengths.

 $\langle \alpha \rangle = +0.4$

Torne et al. 2015, 2017

Many more pulsars are predicted to exist in the vicinity of the Galactic Center super-massive black hole Sgr A^{*}.

VLBI observations at 1mm aim at imaging the Event Horizon of the Galactic Center black hole with 26 micro-as resolution using simultaneous observations with 9 observatories, including the 30m.

Event Horizon Telescope (EHT)

- The EHT is made-up of 9 radio telescopes spread around the globe, to create an Earth-sized mm interferometer. It is VLBI at 1.3mm wavelength.
- Main goals are to image the silhouette of the super-massive black holes against the bright surrounding matter, in the Galactic Center and in M87 with unsurpassed angular resolution of $\sim 20\mu$ as.
- Ist and 2nd EHT runs in April 2017 and 2018. The IRAM 30m telescope successfully participated for both runs. In April 2019, NOEMA plans to join the EHT project.

Falcke et al. 2000